Python数据集切分

在处理数据过程中经常要把数据集切分为训练集和测试集,因此记录一下切分代码。

'''
data:数据集
test_ratio:测试机占比
如果data为numpy.numpy.ndarray直接使用此代码
如果data为pandas.DatFrame类型则
    return data[train_indices],data[test_indices]
修改为
    return data.iloc[train_indices],data.iloc[test_indices]
'''
def split_train(data,test_ratio):
    shuffled_indices=np.random.permutation(len(data))
    test_set_size=int(len(data)*test_ratio)
    test_indices =shuffled_indices[:test_set_size]
    train_indices=shuffled_indices[test_set_size:]
    return data[train_indices],data[test_indices]

测试代码如下:

import numpy as np
import pandas as pd
data=np.random.randint(100,size=[25,4])
print(data)

结果如下:
这里写图片描述
这里写图片描述
从上图可以看出,原数据集按照5:1被随机分为两部分。但是此种方法存在一个缺点–每次调用次函数切分同一个数据集切分出来的结果都不一样,因此常在np.random.permutation(len(data))先调用np.random.seed(int)函数,来确保每次切分来的结果相同。因此将上述函数改为:

def split_train(data,test_ratio):
    np.random.seed(43)
    shuffled_indices=np.random.permutation(len(data))
    test_set_size=int(len(data)*test_ratio)
    test_indices =shuffled_indices[:test_set_size]
    train_indices=shuffled_indices[test_set_size:]
    return data[train_indices],data[test_indices]

这个函数np.random.seed(43)当参数为同一整数时产生的随机数相同。

### 回答1: LSTM是一种常用的深度学习模型,用于处理序列数据。Python中有多种实现LSTM网络模型的库,如Keras、TensorFlow等。在运用LSTM模型时,需要选择一个适合的数据集来训练模型。 数据集是构建模型的关键,以便获得高效的训练效果。对于LSTM网络模型,合适的数据集通常是序列数据,如文本、语音、时间序列等。在选择数据集时,需要注意数据的真实性、样本量、标签等问题。 针对LSTM网络模型在Python中的应用流程,一般分为以下步骤:首先,准备好符合要求的数据集,包括处理数据、提取特征等;其次,通过LSTM库来建立模型,可以选择Keras、TensorFlow等库;然后,进行模型训练和测试,通过调整超参数、损失函数等,来提高模型效果;最后,将模型应用到测试集中,通过预测结果评估模型效果。 综上所述,LSTM模型在Python中的应用需要选择合适的数据集,并且需要进行数据处理、建立模型、训练和测试等多个步骤,才能获得高效的模型效果。 ### 回答2: LSTM是一种长短时记忆神经网络模型,它可以处理输入序列中的长期依赖关系,广泛应用于自然语言处理、语音识别和时间序列预测等领域。在Python中,利用Keras、TensorFlow、PyTorch等深度学习框架,可以实现LSTM模型,并对给定的数据集进行训练和预测。 对于数据集的获取和准备,通常需要进行数据预处理、划分和标签处理等。在使用LSTM模型时,数据集一般应包含输入序列和对应的输出序列。在文本分类中,输入序列为分词后的句子或段落,输出序列为相应的文本类别。在时间序列预测中,输入序列为历史时序数据,输出序列为未来预测的数据。 利用Python的pandas、numpy等库,可以方便地读取、处理和划分数据集。在LSTM模型的训练中,需要设置合理的超参数(如学习率、批量大小、迭代次数等),并利用交叉验证等方法进行模型选择和调参。在测试和评估阶段,可以计算模型的准确率、精确率、召回率等指标,以评估模型的性能和泛化能力。 总之,LSTM模型在Python中的实现需要对数据集进行预处理和划分,合理设置超参数进行训练和测试,以及评估模型的表现和优化。 ### 回答3: LSTM (Long Short-Term Memory)是一种循环神经网络模型,在处理时间序列等常见任务时表现优异。Python提供了多种可用于构建LSTM模型的软件库,如Keras、TensorFlow和PyTorch等。由于LSTM模型需要大量的数据进行训练,因此要使用适当的数据集来确保模型的有效性。 在进行LSTM模型的训练时,我们需要为其提供一个具有标签的数据集。常用的数据集包括MNIST、CIFAR-10、IMDB等,它们分别用于手写数字识别、图像分类和情感分析等任务。此外,我们也可以使用自己的数据集来训练LSTM模型,例如通过网络爬取文本数据或提取传感器数据等方式来获取数据。 在使用数据集进行LSTM训练时,我们还需要对其进行预处理。首先要对数据进行标准化处理,然后将其转换为合适的形式以便模型训练。如在时间序列的预测任务中,我们需要将数据分割成多个时间步长,并滑动窗口地将其转化为训练样本和标签。此外,我们还需要对数据进行切分,以便将其分为训练集、验证集和测试集等部分,在使用测试集评估模型性能时要避免使用过拟合的模型。 总之,在使用LSTM模型进行训练时,正确选择适当的数据集和对其进行预处理是至关重要的一步。只有这样,我们才能训练出一个有效且具有稳定性的模型,从而实现预测、分类、文本处理等多种应用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shenhuaifeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值